Archive

Posts Tagged ‘margins’

Solving missing data problems using inverse-probability-weighted estimators

We discuss estimating population-averaged parameters when some of the data are missing. In particular, we show how to use gmm to estimate population-averaged parameters for a probit model when the process that causes some of the data to be missing is a function of observable covariates and a random process that is independent of the outcome. This type of missing data is known as missing at random, selection on observables, and exogenous sample selection.

This is a follow-up to an earlier post where we estimated the parameters of a probit model under endogenous sample selection (http://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/). In endogenous sample selection, the random process that affects which observations are missing is correlated with an unobservable random process that affects the outcome. Read more…

Categories: Statistics Tags:

Estimating covariate effects after gmm

In Stata 14.2, we added the ability to use margins to estimate covariate effects after gmm. In this post, I illustrate how to use margins and marginsplot after gmm to estimate covariate effects for a probit model.

Margins are statistics calculated from predictions of a previously fit model at fixed values of some covariates and averaging or otherwise integrating over the remaining covariates. They can be used to estimate population average parameters like the marginal mean, average treatment effect, or the average effect of a covariate on the conditional mean. I will demonstrate how using margins is useful after estimating a model with the generalized method of moments. Read more…

Categories: Statistics Tags:

Effects of nonlinear models with interactions of discrete and continuous variables: Estimating, graphing, and interpreting

I want to estimate, graph, and interpret the effects of nonlinear models with interactions of continuous and discrete variables. The results I am after are not trivial, but obtaining what I want using margins, marginsplot, and factor-variable notation is straightforward. Read more…

Categories: Statistics Tags:

Multiple equation models: Estimation and marginal effects using mlexp

We continue with the series of posts where we illustrate how to obtain correct standard errors and marginal effects for models with multiple steps. In this post, we estimate the marginal effects and standard errors for a hurdle model with two hurdles and a lognormal outcome using mlexp. mlexp allows us to estimate parameters for multiequation models using maximum likelihood. In the last post (Multiple equation models: Estimation and marginal effects using gsem), we used gsem to estimate marginal effects and standard errors for a hurdle model with two hurdles and an exponential mean outcome.

We exploit the fact that the hurdle-model likelihood is separable and the joint log likelihood is the sum of the individual hurdle and outcome log likelihoods. We estimate the parameters of each hurdle and the outcome separately to get initial values. Then, we use mlexp to estimate the parameters of the model and margins to obtain marginal effects. Read more…

Categories: Statistics Tags:

Multiple equation models: Estimation and marginal effects using gsem

Starting point: A hurdle model with multiple hurdles

In a sequence of posts, we are going to illustrate how to obtain correct standard errors and marginal effects for models with multiple steps.

Our inspiration for this post is an old Statalist inquiry about how to obtain marginal effects for a hurdle model with more than one hurdle (http://www.statalist.org/forums/forum/general-stata-discussion/general/1337504-estimating-marginal-effect-for-triple-hurdle-model). Hurdle models have the appealing property that their likelihood is separable. Each hurdle has its own likelihood and regressors. You can estimate each one of these hurdles separately to obtain point estimates. However, you cannot get standard errors or marginal effects this way.

Categories: Statistics Tags:

Using mlexp to estimate endogenous treatment effects in a heteroskedastic probit model

I use features new to Stata 14.1 to estimate an average treatment effect (ATE) for a heteroskedastic probit model with an endogenous treatment. In 14.1, we added new prediction statistics after mlexp that margins can use to estimate an ATE.

I am building on a previous post in which I demonstrated how to use mlexp to estimate the parameters of a probit model with an endogenous treatment and used margins to estimate the ATE for the model Using mlexp to estimate endogenous treatment effects in a probit model. Currently, no official commands estimate the heteroskedastic probit model with an endogenous treatment, so in this post I show how mlexp can be used to extend the models estimated by Stata. Read more…

Categories: Statistics Tags:

Using mlexp to estimate endogenous treatment effects in a probit model

I use features new to Stata 14.1 to estimate an average treatment effect (ATE) for a probit model with an endogenous treatment. In 14.1, we added new prediction statistics after mlexp that margins can use to estimate an ATE.

I am building on a previous post in which I demonstrated how to use mlexp to estimate the parameters of a probit model with sample selection. Our results match those obtained with biprobit; see [R] biprobit for more details. In a future post, I use these techniques to estimate treatment-effect parameters not yet available from another Stata command. Read more…

Categories: Statistics Tags: