### Archive

Posts Tagged ‘vector autoregression’

## Long-run restrictions in a structural vector autoregression

$$\def\bfA{{\bf A}} \def\bfB{{\bf }} \def\bfC{{\bf C}}$$Introduction

In this blog post, I describe Stata’s capabilities for estimating and analyzing vector autoregression (VAR) models with long-run restrictions by replicating some of the results of Blanchard and Quah (1989). Read more…

## Structural vector autoregression models

$$\def\bfy{{\bf y}} \def\bfA{{\bf A}} \def\bfB{{\bf B}} \def\bfu{{\bf u}} \def\bfI{{\bf I}} \def\bfe{{\bf e}} \def\bfC{{\bf C}} \def\bfsig{{\boldsymbol \Sigma}}$$In my last post, I discusssed estimation of the vector autoregression (VAR) model,

\begin{align}
\bfy_t &= \bfA_1 \bfy_{t-1} + \dots + \bfA_k \bfy_{t-k} + \bfe_t \tag{1}
\label{var1} \\
E(\bfe_t \bfe_t’) &= \bfsig \label{var2}\tag{2}
\end{align}

where $$\bfy_t$$ is a vector of $$n$$ endogenous variables, $$\bfA_i$$ are coefficient matrices, $$\bfe_t$$ are error terms, and $$\bfsig$$ is the covariance matrix of the errors.

In discussing impulse–response analysis last time, I briefly discussed the concept of orthogonalizing the shocks in a VAR—that is, decomposing the reduced-form errors in the VAR into mutually uncorrelated shocks. In this post, I will go into more detail on orthogonalization: what it is, why economists do it, and what sorts of questions we hope to answer with it. Read more…

Categories: Statistics Tags:

## Vector autoregressions in Stata

Introduction

In a univariate autoregression, a stationary time-series variable $$y_t$$ can often be modeled as depending on its own lagged values:

\begin{align}
y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \dots
+ \alpha_k y_{t-k} + \varepsilon_t
\end{align}

When one analyzes multiple time series, the natural extension to the autoregressive model is the vector autoregression, or VAR, in which a vector of variables is modeled as depending on their own lags and on the lags of every other variable in the vector. A two-variable VAR with one lag looks like

\begin{align}
y_t &= \alpha_{0} + \alpha_{1} y_{t-1} + \alpha_{2} x_{t-1}
+ \varepsilon_{1t} \\
x_t &= \beta_0 + \beta_{1} y_{t-1} + \beta_{2} x_{t-1}
+ \varepsilon_{2t}
\end{align}

Applied macroeconomists use models of this form to both describe macroeconomic data and to perform causal inference and provide policy advice.

In this post, I will estimate a three-variable VAR using the U.S. unemployment rate, the inflation rate, and the nominal interest rate. This VAR is similar to those used in macroeconomics for monetary policy analysis. I focus on basic issues in estimation and postestimation. Data and do-files are provided at the end. Additional background and theoretical details can be found in Ashish Rajbhandari’s [earlier post], which explored VAR estimation using simulated data. Read more…

Categories: Statistics Tags:

## Vector autoregression—simulation, estimation, and inference in Stata

$$\newcommand{\epsb}{{\boldsymbol{\epsilon}}} \newcommand{\mub}{{\boldsymbol{\mu}}} \newcommand{\thetab}{{\boldsymbol{\theta}}} \newcommand{\Thetab}{{\boldsymbol{\Theta}}} \newcommand{\etab}{{\boldsymbol{\eta}}} \newcommand{\Sigmab}{{\boldsymbol{\Sigma}}} \newcommand{\Phib}{{\boldsymbol{\Phi}}} \newcommand{\Phat}{\hat{{\bf P}}}$$Vector autoregression (VAR) is a useful tool for analyzing the dynamics of multiple time series. VAR expresses a vector of observed variables as a function of its own lags.

Simulation

Let’s begin by simulating a bivariate VAR(2) process using the following specification,

$\begin{bmatrix} y_{1,t}\\ y_{2,t} \end{bmatrix} = \mub + {\bf A}_1 \begin{bmatrix} y_{1,t-1}\\ y_{2,t-1} \end{bmatrix} + {\bf A}_2 \begin{bmatrix} y_{1,t-2}\\ y_{2,t-2} \end{bmatrix} + \epsb_t$

where $$y_{1,t}$$ and $$y_{2,t}$$ are the observed series at time $$t$$, $$\mub$$ is a $$2 \times 1$$ vector of intercepts, $${\bf A}_1$$ and $${\bf A}_2$$ are $$2\times 2$$ parameter matrices, and $$\epsb_t$$ is a $$2\times 1$$ vector of innovations that is uncorrelated over time. I assume a $$N({\bf 0},\Sigmab)$$ distribution for the innovations $$\epsb_t$$, where $$\Sigmab$$ is a $$2\times 2$$ covariance matrix.

I set my sample size to 1,100 and Read more…