\(\newcommand{\Eb}{{\bf E}}
\newcommand{\xb}{{\bf x}}
\newcommand{\betab}{\boldsymbol{\beta}}\)Differences in conditional probabilities and ratios of odds are two common measures of the effect of a covariate in binary-outcome models. I show how these measures differ in terms of conditional-on-covariate effects versus population-parameter effects. Read more…
\(\newcommand{\Eb}{{\bf E}}\)The change in a regression function that results from an everything-else-held-equal change in a covariate defines an effect of a covariate. I am interested in estimating and interpreting effects that are conditional on the covariates and averages of effects that vary over the individuals. I illustrate that these two types of effects answer different questions. Doctors, parents, and consultants frequently ask individuals for their covariate values to make individual-specific recommendations. Policy analysts use a population-averaged effect that accounts for the variation of the effects over the individuals. Read more…