Stata Press is pleased to announce the release of *Microeconometrics Using Stata, Second Edition, Volumes I and II*, by A. Colin Cameron and Pravin K. Trivedi. This book not only debuted as Kindle’s #1 New Release but also immediately ranked high on Kindle’s competitive best-seller lists in categories such as Statistics, Microeconomics, Econometrics & Statistics, Education Software, Education Statistics, and Mathematical & Statistical. Read more…

Categories: New Books, Resources, Stata Products Tags: applied microeconometrics, books, cameron, causal inference, econometrics, lasso, linear models, longitudinal data, methods and applications, microeconometrics, nonparametric methods, panel data, release, Stata 17, stata press, statistics, teaching, treatment effects, trivedi
Ermistatas is our most popular t-shirt these days. See it and you will understand why.

We call the character Ermistatas and he is thinking—Ermistatas cogitatu. Notice the electricity bolts being emitted and received by his three antennae.

The shirt is popular even among those who do not use Stata and it’s leading them to ask questions. “Who or what is Ermistatas and why is he, she, or it deserving of a t-shirt?”. Then they add, “And why three and not the usual two antennae?”

Ermistatas is the creation of our arts-and-graphics department to represent Stata 15’s new commands for fitting Extended Regression Models—a term we coined. We call it ERMs for short. The new commands are Read more…

Categories: Statistics Tags: binary outcomes, confounders, continuous outcomes, endogeneity, endogenous selection, ERMs, extended regression models, Heckman, interval outcomes, intreg, linear regression, oprobit, ordered outcomes, probit, sample selection, statistics, treatment, treatment assignment, treatment effects, unobserved confounding
**teffects ipw** uses multinomial logit to estimate the weights needed to estimate the potential-outcome means (POMs) from a multivalued treatment. I show how to estimate the POMs when the weights come from an ordered probit model. Moment conditions define the ordered probit estimator and the subsequent weighted average used to estimate the POMs. I use **gmm** to obtain consistent standard errors by stacking the ordered-probit moment conditions and the weighted mean moment conditions. Read more…

We estimate the average treatment effect (ATE) for an exponential mean model with an endogenous treatment. We have a two-step estimation problem where the first step corresponds to the treatment model and the second to the outcome model. As shown in *Using gmm to solve two-step estimation problems*, this can be solved with the generalized method of moments using **gmm**.

This continues the series of posts where we illustrate how to obtain correct standard errors and marginal effects for models with multiple steps. In the previous posts, we used **gsem** and **mlexp** to estimate the parameters of models with separable likelihoods. In the current model, because the treatment is endogenous, the likelihood for the model is no longer separable. We demonstrate how we can use **gmm** to estimate the parameters in these situations. Read more…

I use features new to Stata 14.1 to estimate an average treatment effect (ATE) for a heteroskedastic probit model with an endogenous treatment. In 14.1, we added new prediction statistics after **mlexp** that **margins** can use to estimate an ATE.

I am building on a previous post in which I demonstrated how to use **mlexp** to estimate the parameters of a probit model with an endogenous treatment and used **margins** to estimate the ATE for the model Using mlexp to estimate endogenous treatment effects in a probit model. Currently, no official commands estimate the heteroskedastic probit model with an endogenous treatment, so in this post I show how **mlexp** can be used to extend the models estimated by Stata. Read more…

I use features new to Stata 14.1 to estimate an average treatment effect (ATE) for a probit model with an endogenous treatment. In 14.1, we added new prediction statistics after **mlexp** that **margins** can use to estimate an ATE.

I am building on a previous post in which I demonstrated how to use **mlexp** to estimate the parameters of a probit model with sample selection. Our results match those obtained with **biprobit**; see [R] biprobit for more details. In a future post, I use these techniques to estimate treatment-effect parameters not yet available from another Stata command. Read more…

This post was written jointly with David Drukker, Director of Econometrics, StataCorp.

In our last post, we introduced the concept of treatment effects and demonstrated four of the treatment-effects estimators that were introduced in Stata 13.Â Today, we will talk about two more treatment-effects estimators that use matching. Read more…

This post was written jointly with David Drukker, Director of Econometrics, StataCorp.

The topic for today is the treatment-effects features in Stata.

Treatment-effects estimators estimate the causal effect of a treatment on an outcome based on observational data.

In today’s posting, we will discuss four treatment-effects estimators:

- RA: Regression adjustment
- IPW: Inverse probability weighting
- IPWRA: Inverse probability weighting with regression adjustment
- AIPW: Augmented inverse probability weighting

We’ll save the matching estimators for part 2.

We should note that nothing about treatment-effects estimators magically extracts causal relationships. As with any regression analysis of observational data, the causal interpretation must be based on a reasonable underlying scientific rationale. Read more…

Two-step estimation problems can be solved using the **gmm** command.

When a two-step estimator produces consistent point estimates but inconsistent standard errors, it is known as the two-step-estimation problem. For instance, inverse-probability weighted (IPW) estimators are a weighted average in which the weights are estimated in the first step. Two-step estimators use first-step estimates to estimate the parameters of interest in a second step. The two-step-estimation problem arises because the second step ignores the estimation error in the first step.

One solution is to convert the two-step estimator into a one-step estimator. My favorite way to do this conversion is to stack the equations solved by each of the two estimators and solve them jointly. This one-step approach produces consistent point estimates and consistent standard errors. There is no two-step problem because all the computations are performed jointly. Newey (1984) derives and justifies this approach. Read more…

There’s a new release of Stata. You can order it now, it starts shipping on June 24, and you can find out about it at www.stata.com/stata13/.

Well, we sure haven’t made that sound exciting when, in fact, Stata 13 is a big — we mean really BIG — release, and we really do want to tell you about it.

Rather than summarizing, however, we’ll send you to the website, which in addition to the standard marketing materials, has technical sheets, demonstrations, and even videos of the new features.

And all 11,000 pages of the manuals are now online.

Categories: New Products Tags: BLOBs, effect sizes, endogenous treatment effects, forecasts, generalized SEM, Java plugins, long strings, multilevel mixed-effects, power, Project Manager, random-effects panel data, sample size, treatment effects