\(\newcommand{\betab}{\boldsymbol{\beta}}
\newcommand{\xb}{{\bf x}}
\newcommand{\yb}{{\bf y}}
\newcommand{\gb}{{\bf g}}
\newcommand{\Hb}{{\bf H}}
\newcommand{\thetab}{\boldsymbol{\theta}}
\newcommand{\Xb}{{\bf X}}
\)I review the theory behind nonlinear optimization and get more practice in Mata programming by implementing an optimizer in Mata. In real problems, I recommend using the optimize() function or moptimize() function instead of the one I describe here. In subsequent posts, I will discuss optimize() and moptimize(). This post will help you develop your Mata programming skills and will improve your understanding of how optimize() and moptimize() work.
This is the seventeenth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
A quick review of nonlinear optimization
We want to maximize a real-valued function \(Q(\thetab)\), where \(\thetab\) is a \(p\times 1\) vector of parameters. Minimization is done by maximizing \(-Q(\thetab)\). We require that \(Q(\thetab)\) is twice, continuously differentiable, so that we can use a second-order Taylor series to approximate \(Q(\thetab)\) in a neighborhood of the point \(\thetab_s\),
\[
Q(\thetab) \approx Q(\thetab_s) + \gb_s'(\thetab -\thetab_s)
+ \frac{1}{2} (\thetab -\thetab_s)’\Hb_s (\thetab -\thetab_s)
\tag{1}
\]
where \(\gb_s\) is the \(p\times 1\) vector of first derivatives of \(Q(\thetab)\) evaluated at \(\thetab_s\) and \(\Hb_s\) is the \(p\times p\) matrix of second derivatives of \(Q(\thetab)\) evaluated at \(\thetab_s\), known as the Hessian matrix.
Nonlinear maximization algorithms start with Read more…
I show how to use the undocumented command _vce_parse to parse the options for robust or cluster-robust estimators of the variance-covariance of the estimator (VCE). I then discuss myregress12.ado, which performs its computations in Mata and computes VCE estimators based on independently and identically distributed (IID) observations, robust methods, or cluster-robust methods.
myregress12.ado performs ordinary least-squares (OLS) regression, and it extends myregress11.ado, which I discussed in Programming an estimation command in Stata: An OLS command using Mata. To get the most out of this post, you should be familiar with Programming an estimation command in Stata: Using a subroutine to parse a complex option and Programming an estimation command in Stata: Computing OLS objects in Mata.
This is the sixteenth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
Parsing the vce() option
I used ado-subroutines to simplify the parsing of the options vce(robust) and vce(cluster cvarname) in myregress10.ado; see Programming an estimation command in Stata: Using a subroutine to parse a complex option. Part of the point was to Read more…
I have posted a series of entries about programming an estimation command in Stata. They are best read in order. The comprehensive list below allows you to read them from first to last at your own pace.
- Programming estimators in Stata: Why you should
To help you write Stata commands that people want to use, I illustrate how Stata syntax is predictable and give an overview of the estimation-postestimation structure that you will want to emulate in your programs.
- Programming an estimation command in Stata: Where to store your stuff
I discuss the difference between scripts and commands, and I introduce some essential programming concepts and constructions that I use to write the scripts and commands.
- Programming an estimation command in Stata: Global macros versus local macros
I discuss a pair of examples that illustrate the differences between global macros and local macros.
- Programming an estimation command in Stata: A first ado-command
I discuss the code for a simple estimation command to focus on the details of how to implement an estimation command. The command that I discuss estimates the mean by the sample average. I begin by reviewing the formulas and a do-file that implements them. I subsequently introduce Read more…
I discuss a command that computes ordinary least-squares (OLS) results in Mata, paying special attention to the structure of Stata programs that use Mata work functions.
This command builds on several previous posts; at a minimum, you should be familiar with Programming an estimation command in Stata: A first ado-command using Mata and Programming an estimation command in Stata: Computing OLS objects in Mata.
This is the fifteenth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
An OLS command with Mata computations
The Stata command myregress11 computes the results in Mata. The syntax of the myregress11 command is
myregress11 depvar [indepvars] [if] [in] [, noconstant]
where indepvars can contain factor variables or time-series variables.
In the remainder of this post, I discuss the code for myregress11.ado. I recommend that you click on the file name to download the code. To avoid scrolling, view the code in the do-file editor, or your favorite text editor, to see the line numbers.
I do not discuss Read more…
\(\newcommand{\epsilonb}{\boldsymbol{\epsilon}}
\newcommand{\ebi}{\boldsymbol{\epsilon}_i}
\newcommand{\Sigmab}{\boldsymbol{\Sigma}}
\newcommand{\betab}{\boldsymbol{\beta}}
\newcommand{\eb}{{\bf e}}
\newcommand{\xb}{{\bf x}}
\newcommand{\xbit}{{\bf x}_{it}}
\newcommand{\xbi}{{\bf x}_{i}}
\newcommand{\zb}{{\bf z}}
\newcommand{\zbi}{{\bf z}_i}
\newcommand{\wb}{{\bf w}}
\newcommand{\yb}{{\bf y}}
\newcommand{\ub}{{\bf u}}
\newcommand{\Xb}{{\bf X}}
\newcommand{\Mb}{{\bf M}}
\newcommand{\Xtb}{\tilde{\bf X}}
\newcommand{\Wb}{{\bf W}}
\newcommand{\Vb}{{\bf V}}\)I present the formulas for computing the ordinary least-squares (OLS) estimator and show how to compute them in Mata. This post is a Mata version of Programming an estimation command in Stata: Using Stata matrix commands and functions to compute OLS objects. I discuss the formulas and the computation of independence-based standard errors, robust standard errors, and cluster-robust standard errors.
This is the fourteenth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
OLS formulas
Recall that the OLS point estimates are given by
\[
\widehat{\betab} =
\left( \sum_{i=1}^N \xb_i’\xb_i \right)^{-1}
\left(
\sum_{i=1}^N \xb_i’y_i
\right)
\]
where \(\xb_i\) is the \(1\times k\) vector of independent variables, \(y_i\) is the dependent variable for each of the \(N\) sample observations, and the model for \(y_i\) is
\[
y_i = \xb_i\betab’ + \epsilon_i
\]
If the \(\epsilon_i\) are independently and identically distributed (IID), we estimate Read more…
I discuss a sequence of ado-commands that use Mata to estimate the mean of a variable. The commands illustrate a general structure for Stata/Mata programs. This post builds on Programming an estimation command in Stata: Mata 101, Programming an estimation command in Stata: Mata functions, and Programming an estimation command in Stata: A first ado-command.
This is the thirteenth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
Using Mata in ado-programs
I begin by reviewing the structure in mymean5.ado, which I discussed Read more…
I show how to write a function in Mata, the matrix programming language that is part of Stata. This post uses concepts introduced in Programming an estimation command in Stata: Mata 101.
This is the twelfth post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series.
Mata functions
Commands do work in Stata. Functions do work in Mata. Commands operate on Stata objects, like variables, and users specify options to alter the behavior. Mata functions accept arguments, operate on the arguments, and may return a result or alter the value of an argument to contain a result.
Consider myadd() defined below.
Code block 1: myadd()
mata:
function myadd(X, Y)
{
A = X + Y
return(A)
}
end
myadd() accepts two arguments, X and Y, puts the sum of X and Y into A, and returns A. For example, Read more…
I introduce Mata, the matrix programming language that is part of Stata.
This is the eleventh post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
Distributing a Stata command that implements a statistical method will get that method used by lots of people. They will thank you. And, they will cite you!
This post is the first in the series #StataProgramming about programing an estimation command in Stata that uses Mata to do the numerical work. In the process of showing you how to program an estimation command in Stata, I will discuss do-file programming, ado-file programming, and Mata programming. When the series ends, you will be able to write Stata commands.
Stata users like its predictable syntax and its estimation-postestimation structure that facilitates hypothesis testing, specification tests, and parameter interpretation. To help you write Stata commands that people want to use, I illustrate how Stata syntax is predictable and give an overview of the estimation-postestimation structure that you will want to emulate in your programs. Read more…
I’m still recycling my talk called “Mata, The Missing Manual” at user meetings, a talk designed to make Mata more approachable. One of the things I say late in the talk is, “Unless you already know what pointers are and know you need them, ignore them. You don’t need them.” And here I am writing about, of all things, pointers. Well, I exaggerated a little in my talk, but just a little.
Before you take my previous advice and stop reading, let me explain: Mata serves a number of purposes and one of them is as the primary langugage we at StataCorp use to implement new features in Stata. I’m not referring to mock ups, toys, and experiments, I’m talking about ready-to-ship code. Stata 12’s Structural Equation Modeling features are written in Mata, so is Multiple Imputation, so is Stata’s optimizer that is used by nearly all estimation commands, and so are most features. Mata has a side to it that is exceedingly serious and intended for use by serious developers, and every one of those features are available to users just as they are to StataCorp developers. This is one of the reasons there are so many user-written commands are available for Stata. Even if you don’t use the serious features, you benefit. Read more…