This post is the fourth in a series that illustrates how to plug code written in another language (like C, C++, or Java) into Stata. This technique is known as writing a plugin or as writing a dynamic-link library (DLL) for Stata.
In this post, I write a plugin in Java that implements the calculations performed by mymean_work() in mymean11.ado, discussed in Programming an estimation command in Stata: Preparing to write a plugin, and I assume that you are familiar with that material.
This post is analogous to Programming an estimation command in Stata: Writing a C plugin and to Programming an estimation command in Stata: Writing a C++ plugin. The differences are due to the plugin code being in Java instead of C or C++. I do not assume that you are familiar with the material in those posts, and much of that material is repeated here.
This is the 32nd post in the series Programming an estimation command in Stata. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
This post is the third in a series that illustrates how to plug code written in another language (like C, C++, or Java) into Stata. This technique is known as writing a plugin or as writing a dynamic-link library (DLL) for Stata.
In this post, I write a plugin in C++ that implements the calculations performed by mymean_work() in mymean11.ado, discussed in Programming an estimation command in Stata: Preparing to write a plugin. I assume that you are familiar with the material in that post.
This post is analogous to Programming an estimation command in Stata: Writing a C plugin. The differences are due to the plugin code being in C++ instead of C. I do not assume that you are familiar with the material in that post, and you will find much of it repeated here.
This is the 31st post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
This post is the second in a series that illustrates how to plug code written in another language (like C, C++, or Java) into Stata. This technique is known as writing a plugin or as writing a dynamic-link library (DLL) for Stata.
In this post, I write a plugin in C that implements the calculations performed by mymean_work() in mymean11.ado, discussed in Programming an estimation command in Stata: Preparing to write a plugin. I assume that you are familiar with the material in that post.
This is the 30th post in the series Programming an estimation command in Stata. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
This post is the first in a series that illustrates how to plug code written in another language (like C, C++, or Java) into Stata. This technique is known as writing a plugin or as writing a dynamic-link library (DLL) for Stata.
Plugins can be written for any task, including data management, graphical analysis, or statistical estimation. Per the theme of this series, I discuss plugins for estimation commands.
In this post, I discuss the tradeoffs of writing a plugin, and I discuss a simple program whose calculations I will replace with plugins in subsequent posts.
This is the 29th post in the series Programming an estimation command in Stata. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
estat commands display statistics after estimation. Many of these statistics are diagnostics or tests used to evaluate model specification. Some statistics are available after all estimation commands; others are command specific.
I illustrate how estat commands work and then show how to write a command-specific estat command for the mypoisson command that I have been developing.
This is the 28th post in the series Programming an estimation command in Stata. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…
Quantile regression models a quantile of the outcome as a function of covariates. Applied researchers use quantile regressions because they allow the effect of a covariate to differ across conditional quantiles. For example, another year of education may have a large effect on a low conditional quantile of income but a much smaller effect on a high conditional quantile of income. Also, another pack-year of cigarettes may have a larger effect on a low conditional quantile of bronchial effectiveness than on a high conditional quantile of bronchial effectiveness.
I use simulated data to illustrate what the conditional quantile functions estimated by quantile regression are and what the estimable covariate effects are. Read more…
teffects ipw uses multinomial logit to estimate the weights needed to estimate the potential-outcome means (POMs) from a multivalued treatment. I show how to estimate the POMs when the weights come from an ordered probit model. Moment conditions define the ordered probit estimator and the subsequent weighted average used to estimate the POMs. I use gmm to obtain consistent standard errors by stacking the ordered-probit moment conditions and the weighted mean moment conditions. Read more…
I illustrate that exact matching on discrete covariates and regression adjustment (RA) with fully interacted discrete covariates perform the same nonparametric estimation. Read more…
\(\newcommand{\Eb}{{\bf E}}
\newcommand{\xb}{{\bf x}}
\newcommand{\betab}{\boldsymbol{\beta}}\)Differences in conditional probabilities and ratios of odds are two common measures of the effect of a covariate in binary-outcome models. I show how these measures differ in terms of conditional-on-covariate effects versus population-parameter effects. Read more…
\(\newcommand{\Eb}{{\bf E}}\)The change in a regression function that results from an everything-else-held-equal change in a covariate defines an effect of a covariate. I am interested in estimating and interpreting effects that are conditional on the covariates and averages of effects that vary over the individuals. I illustrate that these two types of effects answer different questions. Doctors, parents, and consultants frequently ask individuals for their covariate values to make individual-specific recommendations. Policy analysts use a population-averaged effect that accounts for the variation of the effects over the individuals. Read more…