Author Archive

## Bayesian logistic regression with Cauchy priors using the bayes prefix

Introduction

Stata 15 provides a convenient and elegant way of fitting Bayesian regression models by simply prefixing the estimation command with bayes. You can choose from 45 supported estimation commands. All of Stata’s existing Bayesian features are supported by the new bayes prefix. You can use default priors for model parameters or select from many prior distributions. I will demonstrate the use of the bayes prefix for fitting a Bayesian logistic regression model and explore the use of Cauchy priors (available as of the update on July 20, 2017) for regression coefficients. Read more…

Categories: Statistics Tags:

## Gelman–Rubin convergence diagnostic using multiple chains

As of Stata 16, see [BAYES] bayesstats grubin and Bayesian analysis: Gelman-Rubin convergence diagnostic.

The original blog posted May 26, 2016, omitted option initrandom from the bayesmh command. The code and the text of the blog entry were updated on August 9, 2018, to reflect this.

Overview

MCMC algorithms used for simulating posterior distributions are indispensable tools in Bayesian analysis. A major consideration in MCMC simulations is that of convergence. Has the simulated Markov chain fully explored the target posterior distribution so far, or do we need longer simulations? A common approach in assessing MCMC convergence is based on running and analyzing the difference between multiple chains.

For a given Bayesian model, bayesmh is capable of producing multiple Markov chains with randomly dispersed initial values by using the initrandom option, available as of the update on 19 May 2016. In this post, I demonstrate the Gelman–Rubin diagnostic as a more formal test for convergence using multiple chains. For graphical diagnostics, see Graphical diagnostics using multiple chains in [BAYES] bayesmh for more details. To compute the Gelman–Rubin diagnostic, I use an unofficial command, grubin, which can be installed by typing the following in Stata: Read more…

Categories: Statistics Tags:

## Fitting distributions using bayesmh

This post was written jointly with Yulia Marchenko, Executive Director of Statistics, StataCorp.

As of update 03 Mar 2016, bayesmh provides a more convenient way of fitting distributions to the outcome variable. By design, bayesmh is a regression command, which models the mean of the outcome distribution as a function of predictors. There are cases when we do not have any predictors and want to model the outcome distribution directly. For example, we may want to fit a Poisson distribution or a binomial distribution to our outcome. This can now be done by specifying one of the four new distributions supported by bayesmh in the likelihood() option: dexponential(), dbernoulli(), dbinomial(), or dpoisson(). Previously, the suboption noglmtransform of bayesmh‘s option likelihood() was used to fit the exponential, binomial, and Poisson distributions to the outcome variable. This suboption continues to work but is now undocumented.

For examples, see Beta-binomial model, Bayesian analysis of change-point problem, and Item response theory under Remarks and examples in [BAYES] bayesmh.

We have also updated our earlier “Bayesian binary item response theory models using bayesmh” blog entry to use the new dbernoulli() specification when fitting 3PL, 4PL, and 5PL IRT models.

Categories: Statistics Tags:

## Bayesian binary item response theory models using bayesmh

This post was written jointly with Yulia Marchenko, Executive Director of Statistics, StataCorp.