gsem is a very flexible command that allows us to fit very sophisticated models. However, it is also useful in situations that involve simple models.
For example, when we want to compare parameters among two or more models, we usually use suest, which combines the estimation results under one parameter vector and creates a simultaneous covariance matrix of the robust type. This covariance estimate is described in the Methods and formulas of [R] suest as the robust variance from a “stacked model”. Actually, gsem can estimate these kinds of “stacked models”, even if the estimation samples are not the same and eventually overlap. By using the option vce(robust), we can replicate the results from suest if the models are available for gsem. In addition, gsem allows us to combine results from some estimation commands that are not supported by suest, like models including random effects. Read more…
I was recently talking with my friend Rebecca about simulating multilevel data, and she asked me if I would show her some examples. It occurred to me that many of you might also like to see some examples, so I decided to post them to the Stata Blog. Read more…
As stated in the documentation for jackknife, an often forgotten utility for this command is the detection of overly influential observations.
Some commands, like logit or stcox, come with their own set of prediction tools to detect influential points. However, these kinds of predictions can be computed for virtually any regression command. In particular, we will see that the dfbeta statistics can be easily computed for any command that accepts the jackknife prefix. dfbeta statistics allow us to visualize how influential some observations are compared with the rest, concerning a specific parameter.
We will also compute Cook’s likelihood displacement, which is an overall measure of influence, and it can also be compared with a specific threshold. Read more…
Introduction
Today I want to show you how to create animated graphics using Stata. It’s easier than you might expect and you can use animated graphics to illustrate concepts that would be challenging to illustrate with static graphs. In addition to Stata, you will need a video editing program but don’t be concerned if you don’t have one. At the 2012 UK Stata User Group Meeting Robert Grant demonstrated how to create animated graphics from within Stata using a free software program called FFmpeg. I will show you how I create my animated graphs using Camtasia and how Robert creates his using FFmpeg. Read more…
In a previous blog entry, I talked about the new Stata 13 command putexcel and how we could use putexcel with a Stata command’s stored results to create tables in an Excel file.
After the entry was posted, a few users pointed out two features they wanted added to putexcel:
- Retain a cell’s format after writing numeric data to it.
- Allow putexcel to format a cell.
In Stata 13.1, we added the new option keepcellformat to putexcel. This option retains a cell’s format after writing numeric data to it. keepcellformat is useful for people who want to automate the updating of a report or paper. Read more…
The new command gsem allows us to fit a wide variety of models; among the many possibilities, we can account for endogeneity on different models. As an example, I will fit an ordinal model with endogenous covariates. Read more…
Update 07 June 2018: See Export tabulation results to Excel—Update for new features that have been added since this original blog.
There is a new command in Stata 13, putexcel, that allows you to easily export matrices, expressions, and stored results to an Excel file. Combining putexcel with a Stata command’s stored results allows you to create the table displayed in your Stata Results window in an Excel file. Read more…
Today I want to talk about effect sizes such as Cohen’s d, Hedges’s g, Glass’s Δ, η2, and ω2. Effects sizes concern rescaling parameter estimates to make them easier to interpret, especially in terms of practical significance.
Many researchers in psychology and education advocate reporting of effect sizes, professional organizations such as the American Psychological Association (APA) and the American Educational Research Association (AERA) strongly recommend their reporting, and professional journals such as the Journal of Experimental Psychology: Applied and Educational and Psychological Measurement require that they be reported. Read more…
There’s a new release of Stata. You can order it now, it starts shipping on June 24, and you can find out about it at www.stata.com/stata13/.
Well, we sure haven’t made that sound exciting when, in fact, Stata 13 is a big — we mean really BIG — release, and we really do want to tell you about it.
Rather than summarizing, however, we’ll send you to the website, which in addition to the standard marketing materials, has technical sheets, demonstrations, and even videos of the new features.
And all 11,000 pages of the manuals are now online.
Categories: New Products Tags: BLOBs, effect sizes, endogenous treatment effects, forecasts, generalized SEM, Java plugins, long strings, multilevel mixed-effects, power, Project Manager, random-effects panel data, sample size, treatment effects
What is it about round numbers that compels us to pause and reflect? We celebrate 20-year school reunions, 25-year wedding anniversaries, 50th birthdays and other similar milestones. I don’t know the answer but the Stata YouTube Channel recently passed several milestones – more than 1500 subscribers, over 50,000 video views and it was launched six months ago. We felt the need for a small celebration to mark the occasion, and I thought that I would give you a brief update.
I could tell you about re-recording the original 24 videos with a larger font to make them easier to read. I could tell you about the hardware and software that we use to record them including our experiments with various condenser and dynamic microphones. I could share quotes from some of the nice messages we’ve received. But I think it would be more fun to talk about….you!
YouTube collects data about the number of views each video receives as well as summary data about who, what, when, where, and how you are watching them. There is no need to be concerned about your privacy; there are no personal identifiers of any kind associated with these data. But the summary data are interesting, and I thought it might be fun to share some of the data with you. Read more…