In this blog post, I’d like to give you a relatively nontechnical introduction to Bayesian statistics. The Bayesian approach to statistics has become increasingly popular, and you can fit Bayesian models using the **bayesmh** command in Stata. This blog entry will provide a brief introduction to the concepts and jargon of Bayesian statistics and the **bayesmh** syntax. In my next post, I will introduce the basics of Markov chain Monte Carlo (MCMC) using the Metropolis–Hastings algorithm. Read more…

\(\def\bfA{{\bf A}}

\def\bfB{{\bf }}

\def\bfC{{\bf C}}\)**Introduction**

In this blog post, I describe Stata’s capabilities for estimating and analyzing vector autoregression (VAR) models with long-run restrictions by replicating some of the results of Blanchard and Quah (1989). Read more…

**estat** commands display statistics after estimation. Many of these statistics are diagnostics or tests used to evaluate model specification. Some statistics are available after all estimation commands; others are command specific.

I illustrate how **estat** commands work and then show how to write a command-specific **estat** command for the **mypoisson** command that I have been developing.

This is the 28th post in the series **Programming an estimation command in Stata**. I recommend that you start at the beginning. See Programming an estimation command in Stata: A map to posted entries for a map to all the posts in this series. Read more…

Have you seen the latest issue of the Stata News? It has a new format that we think you will love. And, I want to make sure that you are not missing out on the articles discussing what our developers and users are doing with Stata.

We have a new section, User’s corner, that highlights interesting, useful, and fun user contributions. In this issue, you will see how Belén Chavez uses Stata to analyze her Fitbit® data.

We kept your favorite sections, including Spotlight articles written by Stata developers. In this issue, Enrique Pinzón demonstrates Estimating, graphing, and interpreting interactions using margins.

If you haven’t been reading the Stata News, you may want to browse previous Spotlight articles on topics such as endogenous treatment effects, item response theory (IRT), and Bayesian analysis. You can find all the previous Spotlight articles here.

We discuss estimating population-averaged parameters when some of the data are missing. In particular, we show how to use **gmm** to estimate population-averaged parameters for a probit model when the process that causes some of the data to be missing is a function of observable covariates and a random process that is independent of the outcome. This type of missing data is known as missing at random, selection on observables, and exogenous sample selection.

This is a follow-up to an earlier post where we estimated the parameters of a probit model under endogenous sample selection (http://blog.stata.com/2015/11/05/using-mlexp-to-estimate-endogenous-treatment-effects-in-a-probit-model/). In endogenous sample selection, the random process that affects which observations are missing is correlated with an unobservable random process that affects the outcome. Read more…

In Stata 14.2, we added the ability to use **margins** to estimate covariate effects after **gmm**. In this post, I illustrate how to use **margins** and **marginsplot** after **gmm** to estimate covariate effects for a probit model.

Margins are statistics calculated from predictions of a previously fit model at fixed values of some covariates and averaging or otherwise integrating over the remaining covariates. They can be used to estimate population average parameters like the marginal mean, average treatment effect, or the average effect of a covariate on the conditional mean. I will demonstrate how using margins is useful after estimating a model with the generalized method of moments. Read more…

Quantile regression models a quantile of the outcome as a function of covariates. Applied researchers use quantile regressions because they allow the effect of a covariate to differ across conditional quantiles. For example, another year of education may have a large effect on a low conditional quantile of income but a much smaller effect on a high conditional quantile of income. Also, another pack-year of cigarettes may have a larger effect on a low conditional quantile of bronchial effectiveness than on a high conditional quantile of bronchial effectiveness.

I use simulated data to illustrate what the conditional quantile functions estimated by quantile regression are and what the estimable covariate effects are. Read more…

\(\def\bfy{{\bf y}}

\def\bfA{{\bf A}}

\def\bfB{{\bf B}}

\def\bfu{{\bf u}}

\def\bfI{{\bf I}}

\def\bfe{{\bf e}}

\def\bfC{{\bf C}}

\def\bfsig{{\boldsymbol \Sigma}}\)In my last post, I discusssed estimation of the vector autoregression (VAR) model,

\begin{align}

\bfy_t &= \bfA_1 \bfy_{t-1} + \dots + \bfA_k \bfy_{t-k} + \bfe_t \tag{1}

\label{var1} \\

E(\bfe_t \bfe_t’) &= \bfsig \label{var2}\tag{2}

\end{align}

where \(\bfy_t\) is a vector of \(n\) endogenous variables, \(\bfA_i\) are coefficient matrices, \(\bfe_t\) are error terms, and \(\bfsig\) is the covariance matrix of the errors.

In discussing impulse–response analysis last time, I briefly discussed the concept of orthogonalizing the shocks in a VAR—that is, decomposing the reduced-form errors in the VAR into mutually uncorrelated shocks. In this post, I will go into more detail on orthogonalization: what it is, why economists do it, and what sorts of questions we hope to answer with it. Read more…

**teffects ipw** uses multinomial logit to estimate the weights needed to estimate the potential-outcome means (POMs) from a multivalued treatment. I show how to estimate the POMs when the weights come from an ordered probit model. Moment conditions define the ordered probit estimator and the subsequent weighted average used to estimate the POMs. I use **gmm** to obtain consistent standard errors by stacking the ordered-probit moment conditions and the weighted mean moment conditions. Read more…

\(\newcommand{\betab}{\boldsymbol{\beta}}\)Time-series data often appear nonstationary and also tend to comove. A set of nonstationary series that are cointegrated implies existence of a long-run equilibrium relation. If such an equlibrium does not exist, then the apparent comovement is spurious and no meaningful interpretation ensues.

Analyzing multiple nonstationary time series that are cointegrated provides useful insights about their long-run behavior. Consider long- and short-term interest rates such as the yield on a 30-year and a 3-month U.S. Treasury bond. According to the expectations hypothesis, long-term interest rates are determined by the average of expected future short-term rates. This implies that the yields on the two bonds cannot deviate from one another over time. Thus, if the two yields are cointegrated, any influence to the short-term rate leads to adjustments in the long-term interest rate. This has important implications in making various policy or investment decisions.

In a cointegration analysis, we begin by regressing a nonstationary variable on a set of other nonstationary variables. Suprisingly, in finite samples, regressing a nonstationary series with another arbitrary nonstationary series usually results in significant coefficients with a high \(R^2\). This gives a false impression that the series may be cointegrated, a phenomenon commonly known as spurious regression.

In this post, I use simulated data to show the asymptotic properties of an ordinary least-squares (OLS) estimator under cointegration and spurious regression. I then perform a test for cointegration using the Engle and Granger (1987) method. These exercises provide a good first step toward understanding cointegrated processes. Read more…